Skip to main content
SDK Installation

Official SDKs

Gately AI provides official client libraries for Python and JavaScript to help you integrate with our API quickly and efficiently.

Installation

pip install taam-cloud==1.0.0
Requirements:
  • Python 3.8+

Basic Usage

Python SDK

import os
from taam_cloud import TaamCloud

# Initialize the client
client = TaamCloud(api_key=os.environ.get("TAAM_API_KEY"))

# Chat completion
response = client.chat.create(
    model="gpt-4-turbo",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "What is artificial intelligence?"}
    ]
)

print(response.choices[0].message.content)

# Generate embeddings
embeddings = client.embeddings.create(
    model="text-embedding-3-small",
    input="Represent this text as an embedding vector"
)

print(embeddings.data[0].embedding[:5])  # Print first 5 values

Node.js SDK

import { TaamCloud } from 'taam-cloud';

// Initialize the client
const client = new TaamCloud({
  apiKey: process.env.TAAM_API_KEY
});

async function main() {
  // Chat completion
  const chatResponse = await client.chat.completions.create({
    model: "gpt-4-turbo",
    messages: [
      {role: "system", content: "You are a helpful assistant."},
      {role: "user", content: "What is artificial intelligence?"}
    ]
  });
  
  console.log(chatResponse.choices[0].message.content);
  
  // Generate embeddings
  const embeddingResponse = await client.embeddings.create({
    model: "text-embedding-3-small",
    input: "Represent this text as an embedding vector"
  });
  
  console.log(embeddingResponse.data[0].embedding.slice(0, 5));  // Print first 5 values
}

main().catch(console.error);

Advanced Features

Streaming Chat Responses

chat_stream = client.chat.create(
    model="gpt-4-turbo",
    messages=[
        {"role": "user", "content": "Write a short poem about clouds"}
    ],
    stream=True
)

for chunk in chat_stream:
    if chunk.choices[0].delta.content:
        print(chunk.choices[0].delta.content, end="", flush=True)

Web Service Integration

# Scrape a webpage
scrape_result = client.web.scrape(
    url="https://example.com",
    formats=["markdown", "links"]
)

print(f"Page content: {scrape_result.data.markdown[:100]}...")
print(f"Found {len(scrape_result.data.links)} links")

Versioning

The Node.js SDK is currently in alpha. API changes may occur before the stable release.
We follow semantic versioning for our SDKs:
  • Python SDK: Stable version 1.0.0
  • Node.js SDK: Alpha version 0.1.0-alpha.3

Looking for TypeScript support?

The Node.js SDK includes TypeScript type definitions.

Need Help?